If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+102t+100=0
a = -4.9; b = 102; c = +100;
Δ = b2-4ac
Δ = 1022-4·(-4.9)·100
Δ = 12364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12364}=\sqrt{4*3091}=\sqrt{4}*\sqrt{3091}=2\sqrt{3091}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(102)-2\sqrt{3091}}{2*-4.9}=\frac{-102-2\sqrt{3091}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(102)+2\sqrt{3091}}{2*-4.9}=\frac{-102+2\sqrt{3091}}{-9.8} $
| 3x+3=15+5x | | x=16=16+16+2x-3x | | 8(((2x+5)/5)+x-3)=61 | | 4x-6=2x+40 | | 90+90+(2x+4)+(3x-29)=306 | | 90+90+(2x+4)+(3x-29)=36 | | 0.554x+2=6.05 | | X^2-14x-83=4 | | .5x+12=2x+27 | | 7/4=-5x | | 6a+7(6)=a-2 | | -3z=8-2 | | 0.48x-1.52=-506 | | 2x+5=37.5 | | 42=4x^2 | | x+5=37.5 | | -226=-12x+2 | | 19=x-(-8) | | 6/x=1,7 | | 15+x=71 | | 2=-12x+2 | | -7x-2=3x+10 | | x^-x-110=0 | | 2x+25=95 | | 12/x+2+8=10 | | 9=b-7/5 | | X+2y(-4)=8 | | 3x^+7x-5=0 | | 3|4x-2|+5=41 | | -3x-5x-17=3 | | 5=3+0.2y | | 5=3+0,2y |